Radical-Ion Chemistry of Natural Indolenines: 19,20-Dehydrotubifoline

Georgette Hugel and Jean Lévy
Laboratoire de Transformations et Synthèse de Substances Naturelles, associé au CNRS, Université de Reims Champagne-Ardennc. Faculié de Pharmacie, 51, rue Cognacq-Jay, F 51096 Reims, France

Abstract: 19,20-dehydrotubifoline was reductively rearranged with N a in boiling dioxane to 15 -methyldeplancheine 11 .

In the course of our synthesis of tuboxenine ${ }^{1}$ we met a novel fragmentation of indolenine 1 to indoles 4 and 5 , that was induced by formation of the radical-anion 2 upon treatment with sodium in boiling tetrahydrofurane. The intermediate aziridinyl radical 3 is thought to account for the reaction.

The transformation appeared to give a possible entry into the small class of iridoid indole alkaloids lacking the ethanamine bridge of tryptamine ${ }^{2}$. For that purpose, 19,20 -dehydrotubifoline 7 (Scheme) was prepared ${ }^{3}$ from akuammicine 6 and further refluxed in tetrahydrofurane in the presence of sodium. The (reduced) indoline 93 was then isolated (14%) as the sole transformation product, along with some unreacted 7 (30%). Raising the temperature upon using dioxane as the solvent ${ }^{4}$ resulted in a more complex reaction that yielded indoles 10^{3} (28%) and $11^{5}(27 \%)$ along with indoline 9^{3} (12%).

The structure of 11 (15 -methyldeplancheine) was assessed ${ }^{5}$ upon its UV, and ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra, which disclosed a new methyl group ($\delta_{\mathrm{C}} 19.94 \mathrm{ppm} ; \delta_{\mathrm{H}} 1.13 \mathrm{ppm}, \mathrm{J}=7.2 \mathrm{~Hz}$). The quaternary aromatic carbons C-2 and C-7 were clearly differenciated at 133.61 and 107.25 ppm respectively; the relationships of C14 and C-5 with C-2, C-7, and with some aliphatic carbons in the molecule were deduced from HMBC NMR experiments ${ }^{6}$: the 14 -protons coupled with $\mathrm{C}-3$ and $\mathrm{C}-15\left({ }^{2} \mathrm{~J}\right)$, and with $\mathrm{C}-2, \mathrm{C}-16$ and $\mathrm{C}-20(3 \mathrm{~J})$, while the 5protons coupled with C-6 $(2 \mathrm{~J})$, and with $\mathrm{C}-3, \mathrm{C}-7$ and $\mathrm{C}-21(3 \mathrm{~J})$.

Fommation of 9,10 and 11 from 7 is accounted for by equilibration of the primarily formed radical-anion $\mathbf{8 a}$ with 8 b and 8 c : simple reduction of $8 a$ and of 8 c yields 9 and 10 , respectively. Further fragmentation of $\mathbf{8 b}$ to 8 d rationalises the formation of 11 , featuring the geissoschizine skeleton. Of interest is the fact that zincacetic acid reduction of 7 was earlier shown 7 to give 9 and dihydro-8b, while no fragmented 11 was then detected. Only when the 16 -methoxycarbonyl appendage was present (e.g. in akuammicine 6) did the reagent promote both rearrangement and fragmentation to 12.

Finally it is thought that the α-orientation of the lone pair of electrons of $\mathrm{N}-4$ in 7 as compared to its β orientation in 1 is responsible for the reaction following a different course, due to the impossibility for the basic nitrogen to participate in the formation of an aziridinyl radical such as $3 .{ }^{8}$

References and Notes:

1. Hugel, G.; Cossy, J.; Lévy, J. Tetrahedron Lett., 1987, 28, 1773-1776.
2. For example, apparicine, uleine, ellipticine, vallesamine, angustilobine.
3. Smith, G.F.; Wrobel, J.T. J.Chem.Soc., 1960,.792-795.
4. Compound $7\left(70 \mathrm{mg}\right.$) and sodium (100 mg) were heated in a sealed tube at $100^{\circ} \mathrm{C}$ for 3 h in dry dioxane (6 ml). After filtration and evaporation of the organic layer, tlc separation of the residue gave 11 ($20 \mathrm{mg}, \mathbf{2 8 \%}$), 9^{3} ($9 \mathrm{mg}, \mathbf{1 2 \%}$): LRMS, 266, (M^{+} $100 \%), 251,158,123,122,108,107 ;{ }^{1} \mathrm{H} \mathrm{nmr}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right), \delta: 1,62\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=6.6 \mathrm{~Hz}, \mathrm{H}_{3}-18\right), 5.23(\mathrm{q}, 1 \mathrm{H}, \mathrm{J}=6.6$ $\mathrm{Hz}, \mathrm{H}-19)$ and $10^{3}(19 \mathrm{mg}, 28 \%)$: LRMS, $268\left(\mathrm{M}^{+2}\right), 266\left(\mathrm{M}^{+}\right), 144,143,138(100 \%), 123,107 ;{ }^{1} \mathrm{H} \mathrm{nmr}(300 \mathrm{MHz}$; CDCl_{3}), $\delta: 1.80\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=6.6 \mathrm{~Hz}, \mathrm{H}_{3}-18\right), 5.70(\mathrm{q}, 1 \mathrm{H}, \mathrm{J}=6.6 \mathrm{~Hz}, \mathrm{H}-19), 8.35(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-1)$.
5. 11: $\mathrm{mp} 112-15^{\circ} \mathrm{C}(\mathrm{MeOH} /$ ether $) ;[\alpha] \mathrm{D}+11^{\circ}(\mathrm{c}=0.4, \mathrm{McOH})$; HRMS, calc.,266.1783, found, 266.1789; LRMS, 266 (100%), 265, 251, 237, 169, 156;uv (MeOH), 224, 272, 284, $290 \mathrm{~nm} ;{ }^{1} \mathrm{H} \mathrm{nmr}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right), 8: 1.13$ (d. $3 \mathrm{H}, \mathrm{J}=7.2 \mathrm{~Hz}, \mathrm{H}_{3}-$ 16), 1.66 ($\mathrm{d}, 3 \mathrm{H}, \mathrm{J}=6.8 \mathrm{~Hz}, \mathrm{H} 3-18$), 1.77 ($\mathrm{dt}, \mathrm{IH}, \mathrm{J}=13.5 ; 8.5 \mathrm{~Hz}, \mathrm{H}-14$), 2.22 ($\mathrm{dt}, 1 \mathrm{H}, \mathrm{J}=13.5 ; 6 \mathrm{~Hz}, \mathrm{H}-14$), $2.70(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{H}-15, \mathrm{H}-6$), 2.95 (m, 2H, H-5, H-6), 3.10 (d, $1 \mathrm{H}, \mathrm{J}=11.3 \mathrm{~Hz}, \mathrm{H}-21$), 3.18 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-5$), 3.46 ($\mathrm{d}, 1 \mathrm{H}, \mathrm{J}=11.3 \mathrm{~Hz}, \mathrm{H}-21$), 3.92 (bd, 1H, H-3), 5.47 (q, 1H, J= $6.8 \mathrm{~Hz}, \mathrm{H}-19), 7.10(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-10, \mathrm{H}-11), 7.35(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=6.8 \mathrm{~Hz}, \mathrm{H}-12), 7.43$ (d, 1H, J= $7.2 \mathrm{~Hz}, \mathrm{H}-9$), 8.3 ($\mathrm{sl}, 1 \mathrm{H}, \mathrm{N}_{1}-\mathrm{H}$). ${ }^{13} \mathrm{C} \mathrm{nmr}$, ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 8: 13.15 (18), 19.66 (6), 19.94 (16), 32.49 (15), 36.57 (14), 51.14 (5), 56.15 (3), 58.99 (21), 107.29 (7), 110.97 (12), 118.02 (9), 119.34 (10), 120.99 (19), 121.45 (11), 127.17 (8), 133.61 (2), 136.01 (13), 136.54 (20).
6. Heteronuclear Multiple Bond Correlation: Bax, A.; Summers, M.F. J.Am.Chem.Soc., 1986, 108, 2093-2094.
7. Hinshaw, W.B.; Lévy, J.; Le Men, J. Tetrahedron Lell., 1971, 995-998.
8. Thanks are due to Prof. L. Le Men-Olivier and to B. Richard for providing us with akuammicine.
